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Abstract

We study opportunistic feedback of channel state and scheduling of users transmissions
at a wireless access point. Our focus is on a regime where users have unknown possibly
slowly-varying channel characteristics and it is desirable to limit the resources expended to
exchanging channel state opportunistic. The paper argues that opportunistically schedul-
ing the user whose current rate is in the highest quantile with respect to an empirical
distribution has substantial advantages. Indeed by comparing to other measurement-based
opportunistic scheduling schemes it systematically achieves high ‘opportunism’ and thus
throughput in fair and robust manner. Further the throughput penalty resulting from esti-
mating users distributions is limited as long as the number of independent samples grows
linearly with the number of active users. Second, a maximum quantile based scheduling
scheme is consistent the use of a simple opportunistic feedback strategy that can be used
to substantially reduce the overheads associated with deciding which user should in fact be
scheduled at any point in time. Using both analytical and simulation results we will show
that the benefits can be substantial for a variety of practical wireless system scenarios.

1 Introduction

Motivation. The scheduling of users data transmissions at a wireless access point has recently
attracted a substantial amount of attention, see e.g., [6][15][4]. A key feature of wireless sys-
tems relative to the traditional wireline systems is that, the channel capacity, or service rate,
may exhibit temporal variations. This allows one to consider scheduling policies that choose to
send to, or receive from, a user (or a subset of users) which at a given point in time has (have)
the best, e.g., highest, capacity. Such opportunistic scheduling can lead to good increases in
the aggregate capacity of a wireless system, and has thus been adopted in various wireless
standards such as CDMA-HDR, HSDPA [2][1], and will almost certainly play a role in future
wireless systems.

Whenever an access point makes an opportunistic decision on the user(s) to serve, it needs
to know the current channel capacity (or a function of it) for all (or a subset) of the users.
Therefore, beforeeachdecisionall users need to transmit their current channel condition to



the access point. This can be a huge overhead, compared to the gain in throughput due to op-
portunistic scheduling. For example, consider a system where all users see i.i.d. (independent,
identically distributed) Rayleigh channel capacity fading. Here, the gain due to opportunistic
scheduling grows at most logarithmically with the number of users in the system, while the
amount of feedback, i.e., the number of transmissions increases linearly with the number of
users. This clearly underlines the need for reducing the amount of feedback in opportunistic
scheduling.

Related Work.Several researchers have studied the problem of reducing feedback in oppor-
tunistic scheduling. A simple threshold based scheme was proposed in [5]. There, the idea was
to allow only users with current channel capacity above a threshold to feedback their current
state. This, it was shown, reduced the amount of feedback significantly for a small reduction
in the overall throughput achieved. However, there it was assumed that the resources used to
feedback channel capacity were not shared among users. Whereas, the issue of reducing feed-
back becomes more relevant when the resources used for feedback are shared among users, for
example in a TDMA system where the time used in collecting the feedback grows linearly with
the number of users. In this paper we will focus on such a setup.

In [13], an ‘opportunistic splitting’ algorithm is proposed in a TDMA set up for uplink
scheduling (although it can be easily modified to downlink scheduling). There, each data
transmission was preceded by mini slots, which are used to learn the current channel capacity of
users via feedback. Once the user with highest channel capacity is identified, data transmission
ensues.

In opportunistic splitting, initially a pair of thresholds depending on the number of users
is set. At the start of the first mini slot, every user with current channel capacity between the
pair of thresholds contend, i.e., transmit to the access point. The access point then broadcasts
to all the users whether no user contended, exactly one user contended, or a collision occurred,
i.e., more than one user contended and the access point was unable to decode any information.
Depending on the broadcast message received, each user modifies his threshold according to a
binary search like algorithm and users’ whose channel capacity is between the new thresholds
contend in the next mini slot. This process continues until exactly one user contends, therefore
the number of mini slots before a transmission vary. This user is guaranteed to be the user with
the highest current channel capacity. It was shown that an average of only 2.5 mini slots are
required for the algorithm to find the user with the highest current channel capacity. This is
significant as compared to linear number of slots required for a naive feedback scheme.

Opportunistic splitting requires two way communication and coordination between the ac-
cess point and users in every mini slot. This may be a high overhead since the time scales
involved are quite small. (In practical systems, a slot is of the order of milliseconds, therefore
each mini slot has to be smaller than a millisecond.) To overcome this coordination problem, a
random access based feedback protocol was proposed in [16], where only users transmit. Here,
each data transmission is preceded by a fixed number of mini slots (the smaller the number of
mini slots, the lesser the time used in feedback). In each mini slot, users with current channel
capacity above a threshold contended with some probability. If in a mini slot exactly one user
contended, then that user’s identity is stored at the access point, and the access point randomly
serves one of the identified users. However, if no user is identified a user is selected at random.
The threshold and probability were optimized to maximize the overall sum capacity. However,
simulation results presented in the paper show that opportunistic splitting performs better than
the proposed scheme.

The above described work assume that all users in the system see i.i.d. channel capacity
distribution. Furthermore, to set the thresholds correctly, it is assumed that the channel capacity
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Figure 1: Structure of a time unit.

distributions are either known at the access point, or by the users. In practice both of the
assumptions are unlikely to be true. (Note that an extension of opportunistic splitting to the
case where users can experience one of two possible channel capacity distributions is presented
in [14], however this is also not a reasonable assumption.)

In practice users channel capacity variations are heterogenous, e.g., users close to an access
point see significantly different channel capacity than those further off. Also, the channel
capacity distributions are usually unknown (both at the access point and by users) and need to
be estimated via measurement. Therefore, one needs to evaluate the penalty incurred due to
estimation.

Contributions. In this paper we propose a threshold based scheme known asstatic split-
ting to reduce the amount of feedback. We will consider a TDMA setup similar to that in
[13][16]. However unlike opportunistic splitting, static splitting requires only one way com-
munication. We will combine static splitting with a distribution based scheduler that we call
maximum quantile schedulingto handle heterogeneity in users’ channel capacity variations.
Maximum quantile scheduling has been proposed by several researchers under different guises
[8][9][3][14], the idea is to schedule the user whose current rate is highest relative to hisown
distribution, i.e., in the highest quantile. Maximum quantile scheduling allows the access point
to calculate a common threshold independent of users’ distribution for our scheme. In this
paper we also develop insight into throughput penalty due to estimation errors using a distribu-
tion free bound developed in [11]. Finally, simulation results indicate that static splitting can
perform better than a truncated form of opportunistic splitting.

Paper Organization.This paper is organized as follows. In Section 2 we give a brief
introduction to maximum quantile scheduling and describe the proposed scheme. We discuss
the throughput penalty incurred due to estimation errors in Section 3. Simulation results are
presented in Section 4. Section 5 concludes the paper.

2 Static Splitting

2.1 System Model and Notation

We begin by introducing our system model and some notation. For simplicity, we focus on
downlink scheduling from an access point to multiple users. Suppose time is divided equal
sized ‘time units’. Each time unit consists ofk equal sized mini slots (for collecting feedback)
followed by a transmission slot during which at most one user can be served (see Figure 1).
In the sequel we use the terms ‘channel capacity’ and ‘rate’ interchangeably and make the
following assumption on user’s channel characteristics over data transmission time slots.



Assumption 2.1 We assume the channel capacity (rate) for each user is a stationary er-
godic process and these processes are independent across users. Further we assume that the
marginal distribution for each user is known a priori at the user.

Some comments on this assumption. First the channel capacities seen by users might indeed
be roughly stationary over a reasonable period of time particularly if users are at fixed locations.
The assumption that users’ rates are independent is also likely to be true, though a notable
exception is the case where mobile users move in a correlated manner, e.g., along a highway.
The assumption that a user knows, and in particular can estimate, the marginal distributions of
the channel capacity processes may not be completely reasonable, but simple book keeping of
the currently achievable rate can be used to estimate distributions. We will discuss estimation
of such distributions in Section 3. Note that channel capacities are not restricted to any specific
distribution, or class of distributions, i.e., users can undergo any fading process. This makes
the analysis presented later applicable to real world scenarios.

In the sequel we will letxi(t) denote the realization of the downlink channel capacity of
useri at time slott, and letX i be a random variable whose distribution is that of the channel
capacity of useri on a typical slot. Recall that we will be assumingX i to be independent
across users but need not be identically distributed. We denote the distribution function ofX i

by FXi(·). Note that by assumptionFXi(·) is known at the user.
For analysis purposes, in this paper we will only consider a ‘fixed saturated’ regime where

the number of users in the system stay fixed with time, and each user in the system is infinitely
backlogged. The number of users in the system are denoted byn.

Before explaining the proposed scheme, we give a brief introduction to maximum quantile
scheduling.

2.2 Maximum Quantile Scheduling

As discussed earlier, maximum quantile scheduling has been proposed independently by sev-
eral researchers. Specifically [8][9] proposed a ‘CDF based scheme’. While [3] proposed a
so called ‘score based scheduler’ and [14] proposed a ‘distribution fairness’ based scheduler.
We have studied the properties of maximum quantile scheduling under greedy user behavior in
[12], in [10], we evaluate its use to achieve quality of service guarantees for real-time traffic,
and in [11] we evaluate its performance in a measurement based set up.

The main idea of the scheme is to schedule a user who’s rate is highest compared to his
owndistribution, i.e., serve userl(t) during slott if

l(t) ∈ arg max
i=1,...,n

FXi(xi(t)).

It is well known thatFXi(X i) is uniformly distributed on[0, 1]. Let U i = FXi(X i), thenU i

is also uniformly distributed on[0, 1]. Maximum quantile can be thought of as picking the
maximum among independent realizations of users’ (i.i.d.)U i’s on every slot. Thus, it is clear
that maximum quantile is equally likely to serve any user on a typical slot, and as a result all
users get served an equal fraction of time, i.e.,1

n

th
of time.

Let U (n) = max[U1, . . . , Un], whereUj is uniformly distributed on[0, 1] ∀j = 1, . . . , n,
then

Pr(U (n) ≤ u) = un, ∀u ∈ [0, 1]. (1)



Then the rate distribution seen by useri on a slot that it gets served is the same asF−1
Xi (U

(n)).
Therefore, the average throughput seen by useri is

Gi
mq(n) =

E[F−1
Xi (U

(n))]

n
=

E[X i,(n)]

n
. (2)

whereX i,(n) is maximum ofn i.i.d. copies ofX i, i.e.,X i,(n) := max[X i
1, . . . , X

i
n], whereX i

j ∼
X i, ∀j = 1, . . . , n.

Compared to other schemes proposed in literature, maximum quantile scheduling is found
to be very useful in a realistic scenario, i.e., a scenario where users have heterogeneous chan-
nel capacity distributions, and parameters/weights associated with a scheduling scheme have to
be estimated via measurement. Maximum quantile not only maximizes the amount of oppor-
tunism exploited while being fair, but is also quite robust to measurement errors (this will be
discussed later also). In fact maximum quantile scheduling does better than the sum through-
put optimal strategy proposed in [7], we refer the reader to [11] for details. Therefore in our
proposed scheme we try to serve a user with high quantile, i.e., highFXi(xi(t)).

2.3 Proposed Scheme

Recall that a slot containedk mini slots used to collect feedback. Using thesek mini slots we
try to identify a user whose current rate is in a high quantile, i.e., highFXi(xi(t)), so as to
maximize the total quantile served. (Note that we do not necessarily try to identify the user
with the highest quantile, we will revisit this point later.) Apart from the several advantages of
selecting a user with high quantile discussed above, we will show in sequel, it also simplifies
threshold calculation.

For simplicity assume that the number of usersn is such thatn
k

an integral value. In the
proposed scheme, a user is associated with exactly one mini slot, withn

k
users associated with

each mini slot. A user can contend for the slot (i.e., send its feedback) only on the mini slot with
which it is associated. In other words, users are split into ‘static’ groups, with users belonging
to the same group allowed to contend only in the same mini slot. This reduces the chances
of collision in a mini slot. Once a user is associated with a mini slot, it calculates a quantile
threshold denoted byqi, i = 1, . . . , n. We will give the details of calculatingqi later.

Consider slott, recall that the rate supported by useri during slott is denoted byxi(t). At
the start of a mini slot, during the first mini slot all users associated with itandhaving current
rate aboveF−1

Xi (q
i) contend, i.e., ifxi(t) > F−1

Xi (q
i) they transmit the quantile of their current

rateFXi(xi(t)) to the access point.
If exactly one user contends, we assume that the access point is able to identity the user

that contended, and the value of its quantile, and store this information. If more than one user
contends, i.e., a collision occurs, then the access point stores the fact that there was a collision
on the first mini slot. If no user contends, then no action is taken by the access point. This
process of contending is repeated in all the subsequent mini slots.

Once the contending for mini slots is finished, if the access point was able to identify at
least one user, it serves the user with the highest quantile among the identified users. However,
if it fails to identify such a set, it chooses to serve a randomly selected user. This can occur
in two ways, if collisions happened in none of the mini slots, then a user is randomly selected
from all the users. However, if a collision occurred on at least one of the mini slot, then a user
is randomly selected among the groups of users that could have contended on the mini slots on
which collisions occurred. This increases the chance of finding a user with a high quantile.

We now discuss calculating the thresholdqi. Let Si be the event denoting the selection
of useri for service, and1Si be the indicator function forSi. Recall that we would like to



adjust the thresholdsqi’s so as to maximize the overall sum quantile of the users served, i.e.,
E[

∑n
i=1 FXi(X i)1Si ].

Recall thatFXi(X i) are i.i.d. across users, therefore each user is equally likely to achieve a
high quantile. Therefore to maximizeE[

∑n
i=1 FXi(X i)1Si ], the scheduler is equally likely to

select a user, i.e.,∀i, Pr(Si) = 1
n
. Also, the maximum number of users that can contend in any

mini slot is n
k
. These symmetries allows us to have a common thresholdq across users, i.e.,

qi = q, ∀i = 1, . . . , n. Now consider

E[
n∑

i=1

FXi(X i)1Si ] =
n∑

i=1

E[FXi(X i)|Si] Pr(Si) =
1

n

n∑
i=1

E[FXi(X i)|Si].

Again by symmetry,E[FXi(X i)|Si] is equal across users, therefore it is sufficient to choose a
value ofq that maximizeE[FXi(X i)|Si] for any useri. For simplicity, from hereon we will
drop the super script in notation denoting the user in this subsection.

Note that in our scheme, even if a user is correctly identified by the access point and selected
for service, it may not have the highest quantile. LetSj, j = n

k
, . . . , n denote the correct

identification and selection of user when it has thejth highest quantile. (Note that a user has
to be at least the highest in its group to to be identified, therefore the minimum value ofj is
n
k
.) Let Sr denote random selection of a user (when no user has been identified by the access

point). Then

E[FX(X)|S] =
n∑

j=n
k

E[FX(X)|Sj] Pr(Sj) + E[FX(X)|Sr] Pr(Sr). (3)

Now

Pr(Sn) =

∫ 1

q

nun−1(
q

u
)

n
k
−1du =

n

n(1− 1
k
) + 1

(q
n
k
−1 − qn), (4)

and
E[FX(X)|Sn] ≈ E[U (n)] =

n

n + 1
, (5)

whereU (n) is as defined in (1). Furthermore since we will be taking maximum among quantiles
of successfully identified users with quantiles greater thanq, ∀j = n

k
, . . . , n,

E[FX(X)|Sj] ≥ 1 + q

2
. (6)

Note that if the value ofq is high, then the above inequality can be treated as an approximate
equality.

Then from (5) and (6), one can rewrite (3) as

E[FX(X)|S] ≈ n

n(1− 1
k
) + 1

(q
n
k
−1−qn) Pr(Sn)+

1 + q

2

n−1∑

j=n
k

Pr(Sj)+E[FX(X)|Sr] Pr(Sr).

(7)
Now

∑n−1
j=n

k
Pr(Sj) is the probability that the access point is unable to identify the user with

the highest quantile, but is able to identify at least one user in the remainingk − 1 mini slots
that do not contain the user with the highest quantile. Let

ps =
n

k
(1− q)q

n
k
−1



denote the probability of a successful transmission in a typical mini slot. Then one can approx-
imate

∑n−1
j=n

k
Pr(Sj) as

n−1∑

j=n
k

Pr(Sj) ≈ (1− Pr(Sn))(1− (1− ps)
k−1). (8)

Finally

Pr(Sr) = 1−
n∑

j=n
k

Pr(Sj), (9)

and we can approximateE[FX(X)|Sr] as

E[FX(X)|Sr] ≈ 1

2
, (10)

i.e., the average quantile of the selected user when it is selected completely randomly (and not
conditioned on the access point being unable to identify any user).

Then (7) can be further rewritten as

E[FX(X)|S] ≈ Pr(Sn)
n

n(1− 1
k
) + 1

(q
n
k
−1 − qn) +

1 + q

2

n−1∑

j=n
k

Pr(Sj) +
1

2
Pr(Sr), (11)

where the probabilities are defined in (4), (8) and (9).
Recall that we wanted to find the value of thresholdq that maximized the value of sum

quantile of users served. This can be obtained numerically by searching over[0, 1] and finding
the value ofq that maximized (11). In Figure 2 we plot the variation of optimum thresholdq
for an increasing number of users fork = 5, 7, 9. The threshold increases withn for a givenk,
and withk for a givenn

k
, this is expected.

Note that (11) is independent of users’ channel capacity distributions. The expression de-
rived in (11) can also be used to find an approximate value ofq even whenn

k
is not an integral

value.
Some final comments, one observes that opportunistic splitting can also be combined with

maximum quantile scheduling to handle heterogeneity in users’ channel capacity. However,
opportunistic splitting was designed to only find the user with the highest quantile/rate. In a
practical system the number of mini slots may be limited, and if the scheme is unable to find
the user with the highest quantile in those many mini slots, a user has to be chosen at random.
This is not desirable. Whereas if static splitting is unsuccessful in finding the user with the
highest quantile, it tries to serve a user with high quantile. The possibility of serving a high
quantile user (and not the highest) is captured in (11), in fact the expression also captures the
performance of the scheme even when a user is selected at random. Therefore maximizing
(11), can lead to better performance as compared to opportunistic splitting. We will verify this
in Section 4.

3 Penalty due to Estimation Errors

As discussed earlier, opportunistic splitting and the scheme proposed in [16] assume that the
channel capacity distributions of users are either known to the users or are known at the access
point. This assumption is also required for static splitting (rate distribution has to be known by
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Figure 2: Variation of optimal thresholdq with n andk.

the user). However this is unlikely, and one has to estimate the distribution via measurement.
Therefore, one needs to evaluate the penalty incurred due to errors in estimation.

Suppose the quantile of the current rate of a user is estimated using the previousm samples
of the user’s rate. The empirical distribution of useri during slott based onm previous samples
is denoted bỹFm,t

Xi (·) and is given by

F̃m,t
Xi (x) =

1

m

m∑
j=1

1{X i(t− j) ≤ x}. (12)

Note that the above way of estimating is similar to the score function described in [3]. Thus
maximum quantile scheduling of users based on estimated distributions, would choose userl(t)
for service during slott if

l(t) ∈ arg max
i=1,...,n

F̃m,t
Xi (xi(t)), (13)

with ties being broken arbitrarily. It can be shown that even with estimated distributions as
given in (12), maximum quantile scheduling will serve each user an equal fraction of time.

Recall that theGi
mq(n) (2) is the throughput experienced by useri under maximum quantile

scheduling with when channel capacity distribution is perfectly known. LetG̃i
mq(n,m) be

the throughput experienced by useri under maximum quantile scheduling when users’ rate
distribution is estimated according to (12). We now state a Theorem from [11] that gives a
distribution independent bound on the relative error betweenGi

mq(n) andG̃i
mq(n,m).



Theorem 3.1 Consider a fixed saturated system withn users whose channel capacity varia-
tions satisfy Assumption 2.1. Suppose the channel capacity distributions in such a system are
estimated via (12) base onm independentsamples of a user’s channel and users are served
using maximum quantile scheduling, then

Gi
mq(n) ≥ G̃i

mq(n,m), ∀m,

and the relative throughput penalty is bounded by

|Gi
mq(n)− G̃i

mq(n,m)|
Gi

mq(n)
≤ 1− m + 1

n
(1− (

m

m + 1
)n).

Opportunistic splitting attempts to identify the user with the highest quantile. If the distri-
butions are estimated, the scheme will make the same mistakes as made by the access point
under (13). Therefore Theorem 3.1 also applies to opportunistic slitting.

One can show that for reasonably largen, the above stated bound increases withn. Now in
static splitting, we may not select the highest user, but we will be selecting the highest among
n
k
, 2n

k
, . . . , n users (i.e., the highest in a mini slot, or the highest among two mini slots and so

on). Also, because there is no relative penalty incurred when users are selected at random,
the overall relative penalty incurred by static splitting is likely to be lower than that indicated
by the bound, or lower than that incurred by opportunistic splitting. (Note that static splitting
selects a user only if its current quantile is above a threshold, therefore Theorem 3.1 does not
directly apply to it.) We verify this conjecture in Section 4.

4 Simulation Results

We simulated the proposed scheme to observe its performance. We first describe the setup used
for simulations. For simplicity, we assume that all users undergo i.i.d. Rayleigh fading with
a mean SNR of 2. The bandwidth associated with each user is 500 KHz and we assume that
coding achieves the Shannon rate. We setk = 5, and increase the number of users from 5 to
35 in steps of 5, i.e., the maximum number of users that can contend in a mini slot are equal
across slots and increase from 1 to 7. The thresholdq is set as discussed in Section 2.

We also compared our scheme’s performance with that of opportunistic splitting. Note that
a mini slot in opportunistic splitting consists of two transmissions, whereas a mini slot in our
scheme consists of only one transmission. Also note that in our scheme, at the end of mini
slots an extra transmission is required from the access point informing the user it has selected
for service, i.e., in totalk + 1 transmissions are required. Therefore to be fair, we compare
our scheme with a truncated form of opportunistic splitting where at most(k+1)

2
= 3 mini slots

are used. At the end of 3 mini slots if the algorithm is unable to find the user with the highest
quantile, then it selects a user at random. Note that 3 is greater than the average of 2.5 slots
needed for the scheme to converge.

We performed two experiments, in the first experiment we observed the throughput perfor-
mance of the schemes when the channel capacity distributions are perfectly known. We plot
the loss in throughput (due to lower feedback) relative to the case when the user with the high-
est quantile is known in Figure 3. It is clear from the figure that static splitting outperforms
opportunistic splitting. When there are 10 users in the system, static splitting has a 40% lower
loss compared to opportunistic splitting.
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Figure 3: Relative throughput loss due to low feedback under static splitting and opportunistic
splitting with increasing number of users.

In the second experiment we study the penalty suffered due to estimating channel capacity
distributions. The distributions were estimated usingm = 100 independent previous sam-
ples. We plot the throughput penalty compared to perfectly known distributions case for both
static splitting and the truncated opportunistic splitting in Figure 4. As expected static splitting
performs better.

5 Conclusion

In this paper we presented a simple scheme for reducing feedback in opportunistic scheduling
networks. The scheme is novel in the sense that one can calculate the thresholds independent
of users’ distribution making it very much applicable to real world scenarios. We also develop
insights into the loss incurred when rate distributions are estimated.

Unlike previous work our approach is focussed on finding a user with high quantile, not
necessarily the user with the highest quantile. The advantage of such an approach is that it can
lead to better overall performance. This is verified by simulation results.
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